Non-Informative Dirichlet Score for learning Bayesian networks
نویسندگان
چکیده
Learning Bayesian networks is known to be highly sensitive to the chosen equivalent sample size (ESS) in the Bayesian Dirichlet equivalence uniform (BDeu). This sensitivity often engenders unstable or undesired results because the prior of BDeu does not represent ignorance of prior knowledge, but rather a user’s prior belief in the uniformity of the conditional distribution. This paper presents a proposal for a noninformative Dirichlet score by marginalizing the possible hypothetical structures as the user’s prior belief. Some numerical experiments demonstrate that the proposed score improves learning accuracy. The results also suggest that the proposed score might be effective especially for small samples.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملDirichlet Bayesian Network Scores and the Maximum Entropy Principle
A classic approach for learning Bayesian networks from data is to select the maximum a posteriori (MAP) network. In the case of discrete Bayesian networks, the MAP network is selected by maximising one of several possible Bayesian Dirichlet (BD) scores; the most famous is the Bayesian Dirichlet equivalent uniform (BDeu) score from Heckerman et al. (1995). The key properties of BDeu arise from i...
متن کاملLearning networks determined by the ratio of prior and data
Recent reports have described that the equivalent sample size (ESS) in a Dirichlet prior plays an important role in learning Bayesian networks. This paper provides an asymptotic analysis of the marginal likelihood score for a Bayesian network. Results show that the ratio of the ESS and sample size determine the penalty of adding arcs in learning Bayesian networks. The number of arcs increases m...
متن کاملRobust learning Bayesian networks for prior belief
Recent reports have described that learning Bayesian networks are highly sensitive to the chosen equivalent sample size (ESS) in the Bayesian Dirichlet equivalence uniform (BDeu). This sensitivity often engenders some unstable or undesirable results. This paper describes some asymptotic analyses of BDeu to explain the reasons for the sensitivity and its effects. Furthermore, this paper presents...
متن کامل